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Vortex breakdown is a phenomenon inherent to many practical problems, such
as leading-edge vortices on aircraft, atmospheric tornadoes, and flame-holders
in combustion devices. The breakdown of these vortices is associated with the
stagnation of the axial velocity on the vortex axis and the development of a near-axis
recirculation zone. For large enough Reynolds number, the breakdown can be time-
dependent. The unsteadiness can have serious consequences in some applications,
such as tail-buffeting in aircraft flying at high angles of attack. There has been much
interest in controlling the vortex breakdown phenomenon, but most efforts have
focused on either shifting the threshold for the onset of steady breakdown or altering
the spatial location of the recirculation zone. There has been much less attention paid
to the problem of controlling unsteady vortex breakdown. Here we present results
from a combined experimental and numerical investigation of vortex breakdown in
an enclosed cylinder in which low-amplitude modulations of the rotating endwall
that sets up the vortex are used as an open-loop control. As expected, for very low
amplitudes of the modulation, variation of the modulation frequency reveals typical
resonance tongues and frequency locking, so that the open-loop control allows us to
drive the unsteady vortex breakdown to a prescribed periodicity within the resonance
regions. For modulation amplitudes above a critical level that depends on the
modulation frequency (but still very low), the result is a periodic state synchronous
with the forcing frequency over an extensive range of forcing frequencies. Of
particular interest is the spatial form of this forced periodic state: for modulation
frequencies less than about twice the natural frequency of the unsteady breakdown,
the oscillations of the near-axis recirculation zone are amplified, whereas for
modulation frequencies larger than about twice the natural frequency the oscillations
of the recirculation zone are quenched, and the near-axis flow is driven to the steady
axisymmetric state. Movies are available with the online version of the paper.

1. Introduction
Swirling vortex flows such as are found on swept-wing aircraft at high angles of

attack, in turbomachinary and swirl combusters, and in tornadoes are susceptible to
vortex breakdown, a sudden and drastic bursting of the vortex often accompanied
by localized regions of recirculation on the swirl axis. Vortex breakdown has been
the subject of intense study for the past half-century, and although there has been
significant progress in our understanding of the flow phenomenon, much remains
unclear. Extensive reviews on this subject include Hall (1972), Leibovich (1978),
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Escudier (1988), Delery (1994), Lucca-Negro & O’Doherty (2001). Depending on the
practical application, the occurrence of vortex breakdown can have either favourable
or detrimental effects, and there is much interest in controlling the phenomenon.

Controlling vortex breakdown has received significant attention for swept-wing
aircraft at high angles of attack, where the lift is primarily generated by the vortices
shed from the delta wings or leading-edge extensions. A characteristic of these
vortices is that above a critical angle of attack, they suffer vortex breakdown, and
the associated unsteadiness induces unsteady buffet loads on the aircraft’s vertical
stabilizers, leading to premature fatigue failure. There have been numerous studies on
how to control and/or modify the breakdown of these vortices in order to alleviate
the tail buffeting (see Mitchell & Délery 2001, for a comprehensive review), but for
the most part the strategies have focused on either shifting the location of the vortex
breakdown or on inhibiting its occurrence. And yet, it seems that the problem is not
that the vortex has broken down per se, but rather that the temporal characteristics
of the unsteady vortex breakdown excite the tail buffeting. There have been very few
investigations of control strategies on vortex breakdown where the goal has been
to affect its temporal characteristics. Unsteady blowing on model aircraft has been
explored, but such problems have so many variables due to the complex geometry that
more generic fundamental studies are called for. A recent experimental investigation
into the effects of periodic axial pulsing in a more idealized flow (Khalil, Hourigan &
Thompson 2006) has also focused on shifting the location of the breakdown.

Following the experimental study of Escudier (1984), the swirling vortical flow in
the axis region of an enclosed cylinder driven by the rotation of an endwall has
been a very popular setting for fundamental investigations of vortex breakdown.
The confined geometry leads to a well-posed problem where steady axisymmetric
vortex breakdown recirculation zones are readily realized in laboratory experiments
and simulated numerically (e.g. Lopez 1990). More recently, this flow geometry
has been used to investigate a number of strategies for the control of the steady
axisymmetric vortex breakdown. Herrada & Shtern (2003) numerically investigated
the thermal suppression of steady axisymmetric vortex breakdown by means of
an imposed axial temperature gradient which induces via centrifugal convection a
large-scale meridional circulation opposing (or enhancing, depending on the sign of
the temperature gradient) the recirculation on the axis. Earlier, using the Boussinesq
approximation, Lugt & Abboud (1987) also showed that an imposed axial temperature
gradient could suppress steady axisymmetric vortex breakdown. Husain, Shtern &
Hussain (2003) experimentally studied the control of steady axisymmetric vortex
breakdown by the co- or counter-rotation of a slender rod placed along the axis.
Mununga et al. (2004) showed experimentally that a small differentially rotating disk
embedded into the stationary endwall could be used to effect a similar control of
the steady axisymmetric vortex breakdown. All of these open-loop control studies
were restricted (by design) to parameter regimes where, in the absence of the control
strategies, the flow was steady and axisymmetric. Gallaire, Chomaz & Huerre (2004)
conducted a closed-loop control study of vortex breakdown in an idealized pipe flow
with the objective being to stabilize the steady axisymmetric columnar vortex, i.e. to
suppress the onset of vortex breakdown.

In this study, we investigate the open-loop control of unsteady vortex breakdown
in the confined cylinder geometry. The control mechanism is provided by a forced
harmonic modulation of the rate of rotation of the rotating endwall. The investigation
is both numerical and experimental. For the unforced flow, it is well known that for
cylinders of height-to-radius aspect ratio between about 1.6 and 2.8, the onset of
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unsteadiness as the rate of rotation of the endwall (measured non-dimensionally
by the Reynolds number) increases is via a supercritical axisymmetric Hopf
bifurcation (Gelfgat, Bar-Yoseph & Solan 2001), and that the resultant time-periodic
axisymmetric flow is stable to three-dimensional perturbations for a considerable
range of Reynolds numbers beyond onset (Blackburn & Lopez 2000, 2002; Blackburn
2002; Lopez, Cui & Lim 2006; Lopez 2006). Here, we report in detail on the response
to variations in the forcing amplitude and forcing frequency for a time-periodic
axisymmetric state in a cylinder of aspect ratio 2.5 at a Reynolds number of 2800,
which is characterized by a large double vortex breakdown bubble undergoing large-
amplitude pulsations along the axis. For very small forcing amplitudes, the resultant
flow is quasi-periodic, possessing both the natural frequency of the unforced bubble
and the forcing frequency. As the amplitude is increased to between 2% and 5%
(depending irregularly on the forcing frequency), the resultant flow locks onto the
forcing frequency and the natural frequency is completely suppressed. This is a
common result in periodically forced flows (Chiffaudel & Fauve 1987). But what
is particularly interesting in this case is how the spatial nature of the forced limit
cycle (locked to the forcing frequency) changes with the forcing frequency. For low
forcing frequencies (less than about twice the natural frequency), the forced limit
cycle consists of an enhanced vortex breakdown recirculation bubble on the axis
oscillating with larger amplitude than in the unforced case, whereas for larger forcing
frequencies, the locked limit cycle has a (nearly) stationary vortex breakdown bubble
on the axis, and its oscillations are most pronounced near the cylinder sidewall. We
have also found windows of limit cycles locked to half the forcing frequency. Both
the experiments and the numerical simulations indicate that all these flow phenomena
remain axisymmetric, at least for Reynolds numbers less than about 3000.

2. Governing equations and numerical scheme
We consider the flow in a circular cylinder of radius R and depth H , with the

bottom lid rotating at a modulated rate Ω(1 + A sin(Ωf t∗)) where t∗ is dimensional
time in seconds, Ω rad s−1 is the mean rotation, Ωf rad s−1 is the forcing frequency,
and A is the relative forcing amplitude. The system is non-dimensionalized using R

as the length scale, and the dynamic time 1/Ω as the time scale. There are four
non-dimensional parameters:

Reynolds number: Re = ΩR2/ν,

forcing amplitude: A,

forcing frequency: ωf = Ωf /Ω,

aspect ratio: H/R,

where ν is the kinematic viscosity. The non-dimensional cylindrical domain is (r, θ,

z) ∈ [0, 1] × [0, 2π) × [1, H/R]. The resulting non-dimensional governing equations
are

(∂t + u · ∇)u = −∇p +
1

Re
∇2u, ∇ · u = 0, (2.1)

where u = (u, v, w) is the velocity field and p is the kinematic pressure.
The boundary conditions for u are:

r = 1: u = v = w = 0, (2.2)

z = H/R: u = v = w = 0, (2.3)

z = 0: u = w = 0, v = r(1 + A sin(ωf t)). (2.4)
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Regularity conditions (i.e. that the velocity be analytic) on the axis (r = 0) are enforced
using appropriate spectral expansions for u, and the discontinuity in azimuthal velocity
at the bottom corner has been regularized in order to achieve spectral convergence.

2.1. Numerical method

The governing equations have been solved using the second-order time-splitting
method proposed in Hughes & Randriamampianina (1998) combined with a pseudo-
spectral method for the spatial discretization, utilizing a Galerkin–Fourier expansion
in the azimuthal coordinate θ and Chebyshev collocation in r and z. The radial
dependence of the variables is approximated by a Chebyshev expansion in [−1, +1]
and enforcing their proper parities at the origin (Fornberg 1998). Specifically, the
vertical velocity w has even parity w(−r, θ, z) = w(r, θ + π, z), whereas u and v have
odd parity. To avoid including the origin in the collocation mesh, an odd number of
Gauss–Lobatto points in r is used and the equations are solved only in the interval
(0, 1]. Following Orszag & Patera (1983), we have used the combinations u+ = u + iv
and u− = u − iv in order to decouple the linear diffusion terms in the momentum
equations. For each Fourier mode, the resulting Helmholtz equations for w, u+ and
u− have been solved using a diagonalization technique in the two coordinates r and
z. The imposed parity of the functions guarantees the regularity conditions at the
origin needed to solve the Helmholtz equations (Mercader, Net & Falqués 1991).

In this study, we have fixed H/R =2.5 and consider variations in Re, A and ωf .
We have used 96 spectral modes in z, 64 in r , and up to 24 in θ for non-axisymmetric
computations, and a time step dt = 2 × 10−2 dynamic time units.

3. Experimental apparatus and technique
The current experiments were performed using the same apparatus as in Lopez

et al. (2006), but with the experimental procedures modified for this particular study.
The apparatus is shown schematically in figure 1. It is inverted from the actual
experimental setup for ease of comparison with the experimental results of others
which have the rotating disk at the bottom of the cylinder (flow visualization photos
are also inverted). A detailed description of the apparatus can be found in Lopez
et al. (2006), and only the essential features are described here.

The apparatus consists of a Plexiglas cylinder, with a matching rotating disk at the
bottom and a stationary disk at the top of the cylinder. The cylinder was fabricated
from a solid piece of Plexiglas rod and painstakingly polished to optical quality. The
inner radius is R = 8.625 ± 0.005 cm and the wall thickness is 2.1 cm. The rotating
disk sits neatly on a high-precision thrust bearing mounted on an adjacent fixed plate,
which in turn is push-fitted into the bottom end of the cylinder to ensure accurate
alignment. The edge of the rotating disk has a maximum excursion of 0.040 mm
(about 0.03◦) and a nominal gap of 0.40 mm between the rotating plate and the
cylinder. The disk was driven by a micro-stepper motor operating at 20 000 steps per
rev, with an adjustable speed range of up to 240 r.p.m. (Ω = 25.1 rad s−1). The motor
was controlled by software written in Labview, which allows the bottom disk to rotate
at a modulated rate Ω(1 + A sin(Ωf t∗)). Most of the experiments are at Re = 2800
with A varying from 0.002 to 0.09. Although the height H of the flow domain can
be varied infinitesimally by changing the position of the stationary top disk using a
1.0 mm pitched screw stud, the aspect ratio was maintained at a constant H/R = 2.5.

The working fluid was a mixture of glycerin and water (roughly 74% glycerin by
weight) with kinematic viscosity ν = 0.254 ± 0.002 cm2 s −1 at a room temperature of
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Figure 1. Schematic of the flow apparatus.

22.3◦C. In all cases, the viscosity was measured using a Hakke Rheometer to an
accuracy of about 0.8%, and the temperature of the mixture was monitored regularly
using a thermocouple located at the bottom of the cylinder to the accuracy of 0.05◦C,
giving a maximum uncertainty in the Reynolds number of about ±22 in absolute
value. To minimize flow image distortion due to the curvature of the cylinder, the
whole cylinder was immersed in a rectangular Plexiglas box filled with the same
working fluid (both the solution and the Plexiglas have similar refractive indices).

Because the cylinder wall is too thick to allow efficient heat exchange between
the fluid inside the cylinder and its surroundings, there is a gradual increase in the
temperature of the fluid, resulting in an increase in Re at a rate ∂Re/∂t ≈ 25 per hour.
In the present investigation, this is not significant as each data point required about
20 minutes of running time which translates into less than 0.3% change in Re. How-
ever, after each data point was taken, the experiment was halted to allow the fluid to
cool down to the room temperature of 22.3◦C before commencing the next experiment.

To measure the oscillatory behaviour of the flow, two flush-mounting hot films
(Dantec 55 R47) were attached to the surface of the stationary endplate with water-
proof glue. The nominal thickness of the sensor is less 0.1 mm, and therefore its effect
on the flow was negligible. These two sensors were located at 2/3 of the radius of the
cylinder and 180◦ apart. As in Lopez et al. (2006), the hot films were not calibrated,



446 J. M. Lopez, Y. D. Cui, F. Marques and T. T. Lim

(a) (b)

0 100 200 300 400 500

t

–0.2

–0.1

0

0.1

0.2

H
o
t-

fi
lm

 o
u
tp

u
t

2700 2720 2740 2760 2780 2800

Re

0

0.1

0.2

0.3

P
ea

k
-t

o
-p

ea
k
 a

m
p
li

tu
d
e

Figure 2. (a) Time series of hot-film output at H/R = 2.5 and Re = 2800, and (b) variation
with Re of the peak-to-peak amplitude of the hot-film output, both for the natural
(unmodulated) limit cycle state LCN .

primarily due to the design of the glue-on hot film which makes calibration against
a known flow velocity difficult; once the hot film is glued to a surface, it cannot
be easily removed (without damage) for calibration in another facility. Nevertheless,
calibration is not of concern when measuring the temporal frequencies in a flow,
and this is confirmed by the experimental results reported in Lopez et al. (2006).
Given that the frequencies of interest in the present investigation are below 1 Hz,
the output signal of the hot film from the constant-temperature anemometer (CTA;
Dantec 55 M01) was conditioned by a low-pass filter with a cutoff frequency of 10 Hz
to eliminate high-frequency noise before it was amplified with an analog amplifier.
The output signal was sampled at 100 Hz using a computer for subsequent analysis.
Although laser Doppler anemometry (LDA) was not attempted in the present study
owing to the equipment not being available in our laboratory, past studies have shown
that hot-film or hot-wire anemometry is as good as or even better than LDA when
measuring oscillatory behaviour for a long time.

4. Results
4.1. The natural limit cycle LCN

The objective of this study is to explore the effects of an imposed harmonic forcing
on an oscillatory vortex breakdown state. We shall begin by briefly reviewing the
salient characteristics of this state (which we shall refer to as the natural limit cycle
LCN ) and establishing the fidelity of the experimental apparatus in obtaining it.

Escudier (1984) first reported the LCN state in his experiments, noting its
axisymmetric nature over a wide range of aspect ratios and Reynolds numbers.
Gelfgat et al. (2001) showed numerically that the onset of LCN is via a supercritical
axisymmetric Hopf bifurcation for H/R ∈ (1.6, 2.8). Nonlinear computations
(Blackburn & Lopez 2000, 2002) have shown that this oscillatory state remains
stable to three-dimensional perturbations for Re up to about 3400. That numerical
finding is consistent with the experimental observations of Stevens, Lopez & Cantwell
(1999). These studies (as well as others, such as Lopez, Marques & Sanchez 2001)
have estimated the critical Re for the Hopf bifurcation at H/R =2.5 to be about 2710,
and the period of oscillation to be about 36 (using Ω as the time scale). Figure 2(a)
shows hot-film output over several cycles of the natural limit cycle flow at H/R = 2.5
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and Re =2800. Using the peak-to-peak amplitude of the hot-film signal as a measure
of the flow state, figure 2(b) shows its variation with Re; a simple extrapolation to
zero gives the experimental estimate Rec = 2710 which is also in excellent agreement
with the theoretical estimate.

Any physical experiment will have small imperfections and perturbations which
are not axisymmetric, and the question is whether these imperfections affect the
dynamics, i.e. do they render the resulting flow non-axisymmetric? There has been
much discussion on this matter in the literature (e.g. Sotiropoulos & Ventikos 2001;
Sotiropoulos, Webster & Lackey 2002; Ventikos 2002; Thompson & Hourigan 2003;
Brons et al. 2007) where the studies have imposed imperfections in order to account
for the asymmetric dye-streak visualizations in experiments. In a time-periodic
axisymmetric flow, free of any imperfections, if the dye (or any passive scalar)
is not released axisymmetrically, the resulting dye-sheet will not be axisymmetric
(Lopez & Perry 1992b; Hourigan, Graham & Thompson 1995). Flow visualization
is not appropriate for determining whether such a flow is axisymmetric or not. The
important point is that if axisymmetry (SO(2) symmetry to be precise) is broken,
the non-axisymmetric pattern will precess at the Hopf frequency responsible for the
symmetry-breaking (Iooss & Adelmeyer 1998; Crawford & Knobloch 1991; Knobloch
1996). This means, for example, that the hot-film time-series from our experiment
should pick up a signal corresponding to such a precession if the flow were not
axisymmetric. No such signal was detected. The spectra of hundreds of experiments
at various points in parameter space (only a select few are shown in the paper) only
show signals at the natural frequency and the modulation frequency and their linear
combinations. This, together with the results shown in figure 2 for the unmodulated
cases, indicate that any small imperfections in our experiment do not result in non-
axisymmetric flow. However, owing to unavoidable imperfections in the release of
dye, the visualized dye sheets shown are slightly asymmetric (e.g. see figures 3 and 17
with small deviations and figure 15 with larger deviations from axisymmetry).

4.2. Harmonic forcing of LCN : temporal characteristics

The issue being addressed in this paper is the response of a time-periodic vortex
breakdown flow, LCN , to harmonic forcing. LCN exists and is stable over a wide range
of (Re, H/R) parameter space; the frequency of its oscillation (non-dimensionalized
by Ω) is essentially independent of Re and only varies slightly with H/R (Stevens et al.
1999; Lopez et al. 2001; Gelfgat et al. 2001; Blackburn & Lopez 2002). In this study,
we present detailed results over a wide sweep of the two control parameters, A and
ωf the amplitude and frequency of the harmonic forcing, on LCN at Re = 2800 and
H/R = 2.5. This state is a little beyond critical, with ε =(Re − Rec)/Rec ≈ 0.0332. The
results are qualitatively similar at other (Re, H/R) values where LCN is the primary
bifurcating mode from the basic state, and the results presented are not peculiar to
the choice Re = 2800 and H/R =2.5.

Flow visualization (using food dye) of LCN over one period is shown in figure 3
(available with the online version of the paper is a movie showing LCN over about
four oscillation periods, movie 1). The pulsing of the recirculation zone on the axis
and the formation and folding of lobes every period are clearly evident and follow
the detailed description of the chaotic advection given in Lopez & Perry (1992a) for
this flow. Using hot film measurements at Re = 2800, we find the natural frequency
of the oscillator (scaled by the rotation frequency of the disk Ω) to be ω0 = 0.1735
(giving a period of 36.2), which is in good agreement with previous estimates of the
Hopf frequency and with the numerically determined natural frequency of LCN in
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t = 0 4.67 9.35 14.02 18.70 23.37 28.04 32.72

Figure 3. Dye flow visualization of the central core region of LCN at H/R =2.5 and Re = 2800
at various times; the period is about 36.2 (the time for the first frame has been arbitrarily set
to zero).

this study. The natural frequency of LCN , ωn, is a (weak) function of the parameters
of the problem, including the amplitude and frequency of the modulation; we will
use ω0 = ωn(Re = 2800, H/R = 2.5, A=0) for scaling purposes.

Periodically forced limit cycles are often studied by varying the forcing amplitude
A and the forcing frequency ωf . Figure 4 shows experimental time series and their
corresponding power spectral density, as the forcing amplitude increases from zero
with a forcing frequency not in resonance with the natural frequency (in this case,
ωf = 0.1, so ωf /ω0 ≈ 0.576). The experimental time series are from hot film output
data. Figure 4(a) is simply LCN at A= 0, a periodic solution with a single frequency
ωn = ω0 and its harmonics in the power spectral density. For A < 0.03, the flow
is quasi-periodic, QP, with two frequencies ωf and ωn. As A increases, the relative
strength of the spectral energies of the two frequencies shifts from ωn to ωf , and by
A= 0.030, the power in the spectra at ω = ωn goes to zero and the flow is a limit cycle
synchronous with the forcing, LCF . When ωf /ωn is not too close to a rational value
p/q with q � 4, this scenario is typical of what is observed.

Figure 5 shows phase portraits of the numerical solutions as the forcing amplitude
increases from zero, for the same values of the remaining parameters as in figure 4:
H/R =2.5, Re = 2800 and ωf = 0.1. It illustrates the same sequence of events:
the natural limit cycle LCN for A= 0 bifurcates to a quasi-periodic solution QP
densely filling a two-torus �2 when A is increased from 0, and at about A ≈ 0.0290
this QP solution bifurcates to the forced limit cycle LCF . Phase portraits of the
numerical solutions are drawn in terms of the vertical velocity at two different
points: Wa = w(r = 0.20, z = 0.75H/R) close to the vortex breakdown bubble and
Ww = w(r = 0.70, z = 0.75H/R) at the jet emerging from the sidewall–rotating disk
corner.

The bifurcation from a limit cycle to a quasi-periodic solution (evolving on
an invariant two-torus �2) is called a Neimark–Sacker bifurcation; it is a Hopf
bifurcation of limit cycles, described for example in Kuznetsov (2004). The bifurcation
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Figure 4. Hot film output time series and corresponding power spectral density for H/R = 2.5,
Re = 2800 with forcing frequency ωf =0.1 and forcing amplitude A as indicated. In (b) and
(d) the hot film outputs from both channels are plotted.
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Figure 5. Phase portraits (with Wa and Ww as the horizontal and vertical axes) of the
numerical solutions at Re = 2800, H/R = 2.5, ωf = 0.10 (ωf /ω0 ≈ 0.576) and A as indicated.

to a �2 is a codimension-one phenomenon: it takes place with the variation of a single
parameter of the dynamical system (e.g. the amplitude A in the bifurcations shown in
figures 4 and 5). However, the dynamics on the two-torus needs a second parameter to
be described in detail, and the forcing frequency ωf is used as the second parameter;
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Figure 6. (a) Schematic of the Poincaré map, showing the stable limit cycle γ and a trajectory
starting at a point y in Π near the limit cycle y0. (b) Poincaré map after a Neimark–Sacker
bifurcation of γ , spawning a two-torus �2, whose cross-section in Π is the invariant circle C.

in the (A, ωf )-parameter space, the Neimark–Sacker bifurcation takes place along a
curve. The dynamics on �2 can be reduced to the study of families of circle maps
(Arnold 1983). One of the salient features of the Neimark–Sacker bifurcation is the
presence of Arnold tongues (resonance horns); these are regions in (A, ωf )-parameter
space emanating from points on the Neimark–Sacker bifurcation curve at which
the two frequencies ωf and ωn are in rational ratios. Each horn is characterized
by a phase-locked solution for which the winding number ωf /ωn = p/q , for some
integers p and q . In between the horns, emerging from all irrational points on the
Neimark–Sacker bifurcation curve, there are curves corresponding to quasi-periodic
solutions with frequencies ωf and ωn in irrational ratios. For a detailed description
of the Neimark–Sacker bifurcation see, for example, Arrowsmith & Place (1990).
The dynamics in small neighborhoods of the resonances along the Neimark–Sacker
curve can be very complicated, in particular when one of the integers p or q is small
(strong resonances, see Kuznetsov 2004). There have been significant advances in
the numerical investigation of the dynamics in these neighborhoods (e.g. Schilder &
Peckham 2007), but for the most part only low-dimensional ODE model problems
have been tackled.

In our problem, on increasing A from zero, there are two different Neimark–
Sacker bifurcations. The corresponding curves in (A, ωf )-parameter space have
been numerically and experimentally determined, and are illustrated for H/R = 2.5,
Re = 2800 in figure 7 below. The solid curve in this figure corresponds to the Neimark–
Sacker bifurcation from the QP state collapsing onto the LCF , which is the observed
solution for large forcing amplitude A. The other Neimark–Sacker bifurcation curve
is the A= 0 axis, where the natural limit cycle LCN bifurcates to a two-torus QP as
A increases from zero. This Neimark–Sacker bifurcation is slightly different from the
standard one as described, for example, by Kuznetsov (2004), because having A= 0
simplifies some of the dynamics; a detailed description of this case can be found in
Gambaudo (1985).

The analysis of the dynamics in a neighbourhood of a periodic orbit γ , of period
T , in a continuous system is greatly simplified by the introduction of the Poincaré
map. Let Π be a hyperplane transverse to the orbit and y0 be the point of intersection
of Π and γ (see figure 6a). By continuity, the points on Π in a neighbourhood U0

of y0 return to Π after a time close to T . This defines a Poincaré map P : U0 → Π .
This Poincaré map is equivalent to strobing the solutions with the frequency of the
periodic orbit γ . Generically, the Poincaré map is defined locally, in a neighbourhood
of the periodic orbit considered. The periodic orbit γ becomes a fixed point of P , and
for a Neimark–Sacker bifurcation, the emerging two-torus �2 becomes an invariant
circle C, and the QP solutions become circle maps (a schematic is shown in figure 6b).
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Figure 7. Critical forcing amplitude, Ac, versus the forcing frequency ωf , and versus ωf /ω0,
at Re = 2800 and H/R = 2.5; (b) is an enlargement of (a) highlighting some of the resonance
horns. The small solid symbols are the numerically determined loci of Neimark–Sacker
bifurcations (the curve joining these symbols is only to guide the eye), and the open diamonds
are the corresponding experimental estimates. Below the Neimark–Sacker curve the QP state
is observed, above it LCF is observed. In the regions enclosed by the dotted curves and
open circles (there are three, near ωf /ω0 ≈ 1/3, 4/3, and 2/1) the flow is locked to a limit
cycle with frequency 0.5ωf , and the star symbols are experimentally determined edges of the
period-doubled region near ωf /ω0 = 1.33.

For the Neimark–Sacker bifurcation LCN → QP on the A= 0 axis, the associated
Poincaré map P0 is based on the natural frequency ωn of LCN . This map is local
in nature, defined only in a neighbourhood of LCN . Moreover, the frequency ωn of
QP, which is inherited from LCN at the bifurcation, is a function of A, ωf and the
remaining parameters of the problem (Re and H/R); in particular, at the second
Neimark–Sacker bifurcation QP → LCF with non-zero A, the power in the spectra at
ωn vanishes to zero and the Poincaré map associated with ωn ceases to exist. For this
second Neimark–Sacker bifurcation, the Poincaré map associated with ωf is global
in nature, and is defined as strobing at the forcing frequency ωf ; it is well-defined for
any solution and any value of the parameters, and is currently used in periodically
forced systems. We make extensive use of this stroboscopic map P in this study.

Figure 7 shows a parametric portrait of the system over an extensive range of
ωf /ω0 in (A, ωf /ω0) parameter space. The small filled circles are the numerically
determined Neimark–Sacker bifurcations from LCF to QP ; the open diamonds are
the experimental estimates of the loci of this bifurcation. In the enlargement shown
in figure 7(b), some of the principal resonance horns are clearly evident, particularly



452 J. M. Lopez, Y. D. Cui, F. Marques and T. T. Lim

(a) ωf /ω0 ≈ 1/3 (b) ωf /ω0 ≈ 1/2 (c) ωf /ω0 ≈ 1/1 (d ) ωf /ω0 ≈ 2/1

–20 0 20

6

12

18

24

–20 0 20

6

12

18

24

–20 0 20

6

12

18

24

–20 0 20

6

12

18

24

Figure 8. Phase portraits (with Wa and Ww as the horizontal and vertical axes) for
Re =2800, H/R = 2.5, A =0.02 and ωf /ω0 as indicated.

the ωf /ω0 = 1/3, 1/2, 1/1 and 2/1 horns. Typical phase portraits of the numerically
determined locked states inside these horns are shown in figure 8; the phase portrait
of LCN is included in each as a dotted circuit for comparison. In the 1:3 horn, the
phase portrait is of a limit cycle that undergoes three loops before closing in on
itself; the time for it to close is about three times the period of LCN . In the 1:2 horn,
the locked state LCL executes two loops before closing, taking about two periods of
LCN to do so. The locked state in the 1:1 horn is very little changed from LCN . The
stroboscopic map of LCL in these horns (1:m) consists of a single fixed point (in
contrast, using the local Poincaré map based on ωn, their Poincaré sections consist of
m period-m points). In the 2:1 horn, the locked state LCL closes in on itself in one
period of LCN , but its stroboscopic map is not a single point, instead consisting of
a pair of period-2 points; the locked state in this horn is not synchronous with ωf ,
instead it has period 4π/ωf = 2π/ωn.

Another feature in figure 7 is the presence of period-doubling bifurcation curves,
shown as dotted curves. The small regions of period doubling close to the resonance
horns 1:3 and 2:1 are associated with these horns, as we will show in detail later
for the 2:1 case. However, the large period-doubling region near ωf /ω0 ≈ 4/3 is
not directly related to the 4:3 horn. There is a very small overlap region between
the period-doubling curve and the Neimark–Sacker bifurcation from LCF to QP ;
the dynamics in this narrow region is very complicated and we have not explored
it in detail, as we are focusing in this paper on controlling the vortex breakdown
bubble oscillations. Figure 9 shows the period-doubling bifurcation as observed in
the experiment from the hot-film output time series and their corresponding power
spectral density. For H/R = 2.5, Re = 2800 and forcing amplitude A= 0.08, the forcing
frequency is increased from ωf = 0.22 to 0.25 in steps of 0.01, crossing the period-
doubling region. The additional peak at ωf /2 is apparent in figures 9(b) and 9(c).
Apart from noise, an additional low frequency ω∗ is also observed, with an energy
at least one order of magnitude smaller than the dominant peaks ωf and ωf /2. The
origin of this peak is uncertain but we suspect it is associated with the fact that the
modulation amplitude is large, and the inertia of the disk may be interfering with
the harmonic forcing from the motor drive. In the numerics, no such low-frequency
signal is observed, and the stroboscopic map is either a single fixed point outside the
period-doubling region or a pair of period-2 points inside.

The large extent in (A, ωf )-space of the period-doubling region near ωf /ω0 = 4/3
suggests that it is not described by the harmonic forcing of an isolated limit cycle. We
know from the linear stability analysis of the steady axisymmetric basic state (Lopez
et al. 2001) that at Re = 2800, a second limit cycle, LCS , is about to bifurcate from
the basic state (at about Re =2850), whose Hopf frequency ωs ≈ 0.67ω0. Forcing at
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Figure 9. Hot film output time series and corresponding power spectral density for
H/R = 2.5, Re = 2800 with forcing amplitude A = 0.08 and forcing frequency ωf as indicated.

ωf ≈ 1.33ω0 not only forces LCN at its 4:3 resonance, but LCS is also being forced
at its 2:1 resonance. We conjecture that the large period-doubling region represents a
nonlinear interaction between the 4:3 resonance of LCN and the 2:1 resonance of LCS .

One of the first experimental studies in fluids where an oscillatory flow is
harmonically forced to a periodic state synchronous with the forcing is that of
Chiffaudel & Fauve (1987). Their experiment consisted of a layer of mercury
heated from below. Above a critical temperature difference across the layer, a
Hopf bifurcation occurs to oscillatory convection rolls. This is their natural limit
cycle LCN . This is then harmonically forced by rotating the layer with a periodic
angular velocity about the vertical axis. They considered LCN a little above critical,
ε = 0.023, and generally for forcing amplitudes of only a few degrees the system
become synchronous with the forcing, LCF , except near strong resonance points.
They examined in detail the 2:1 resonance horn region, both experimentally, and
also theoretically. They derived an amplitude equation (essentially a continuous-time
approximation to the normal form for the discrete-time map), and showed that in
the neighbourhood of the 2:1 resonance only three kinds of states exist: the quasi-
period state QP, the forced limit cycle LCF , and the locked state, LCL. The structure
of their 2:1 resonance horn (their figure 3) is very similar to that of ours, shown
in figure 10. Figure 10 consists of three bifurcation curves: the solid curves with
filled circles are the Neimark–Sacker bifurcation curves separating QP and LCF , the
dashed curve with filled triangles is the period-doubling bifurcation curve separating
LCF and LCL, and the solid curves with filled squares are saddle-node-on-invariance-
circle (SNIC) bifurcation curves on which the QP state synchronizes with the LCL

state (for additional details on the SNIC bifurcations that define the borders of the
Arnold tongues, see Arrowsmith & Place 1990). The other symbols in the figure
are loci of experimentally observed QP (open circles), LCL (filled diamonds) and
LCF (open squares); their observed loci agree well with the delineations provided by
the numerically determined bifurcation curves. Transients near the bifurcation curves
are extremely slow, requiring thousands of forcing periods to determine the state
numerically. Such slow transients are problematic experimentally as the Reynolds
number drifts as the temperature slowly rises in the apparatus.
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Figure 10. Enlargement of figure 7 near the 2:1 resonance horn. There are three bifurcation
curves separating regions where the locked LCL, the forced LCF , and the quasi-periodic
state QP are found. The solid curves with filled circles are the Neimark–Sacker bifurcation
curves separating QP and LCF , the dashed curve with filled triangles is the period-doubling
bifurcation curve separating LCF and LCL, and the solid curves with filled squares are
saddle-node-on-invariance circle (SNIC) bifurcation curves on which the QP state synchronizes
to the LCL state. The other symbols are loci of experimentally observed QP (open circles),
LCL (filled diamonds) and LCF (open squares). The two dotted curves at ωf /ω0 = 1.96 and
2.0 are one-parameter paths along which the variation with A in the power at ωn and ωf are
shown in figure 13.
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Figure 11. (a) Phase portraits in the neighbourhood of the 2:1 resonance for QP at
ωf /ω0 ≈ 1.965 and A = 0.005 just outside the resonance horn and for LCL at ωf /ω0 = 2.0
and A = 0.005 inside the resonance horn; and (b) are the corresponding Poincáre sections.

The phase portraits when crossing the Neimark–Sacker curve in the transition from
QP to LCF , are similar to the last two panels in figure 5. Figure 11(a) shows phase
portraits at A= 0.005 either side of the SNIC bifurcation; for ωf ≈ 1.965ω0 we see
the two-torus structure of QP and for ωf = 2ω0 it has collapsed to the locked state
LCL. The SNIC nature of this transition is more clearly seen from the corresponding
stroboscopic maps shown in figure 11(b). The stroboscopic map of the two-torus is
an invariant circle exhibiting the characteristic slow–fast behaviour near the SNIC
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Figure 12. Phase portraits in the neighbourhood of the 2:1 resonance at ωf /ω0 = 2.0
showing a reverse period-doubling bifurcation of limit cycles as A is increased.
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Figure 13. Variation of the experimentally measured power (normalized by the power of
LCN ) with A in the neighbourhood of the 2:1 resonance horn: the open symbols correspond
to the power at the natural frequency ω0 and the filled symbols correspond to the power at
the forcing frequency ωf ; the circles correspond to LCL inside the horn at ωf /ω0 ≈ 2 and the
triangles correspond to QP just outside the horn at ωf /ω0 ≈ 1.96.

bifurcation, and following the bifurcation the stroboscopic map of LCL reduces to
two period-2 points in the neighbourhood of the slow phases of the invariant circle.

The phase portraits when crossing the period-doubling bifurcation curve separating
LCF and LCL are given in figure 12. At A= 0.035 the phase portrait shows a double-
looped limit cycle LCL with period 4π/ωf inside the horn, and by A= 0.050 the
period-doubling bifurcation has been crossed, and the phase portrait is a single-loop
limit cycle LCF synchronous with the forcing.

Figure 13 shows the variation of the power at the natural and forced frequencies
for a pair of states in the neighbourhood of the 2:1 resonance. Outside the horn, the
power at ωn (the open triangles) drops off monotonically with increasing A with a
rapid decay to zero as the Neimark–Sacker bifurcation is approached, while the power
at ωf (filled triangles) increases linearly with A. This behaviour is typical for most
ωf outside resonance horns. Inside the horns, the power at ωn grows substantially
beyond that of the natural limit cycle before gradually decaying to zero as A increases
towards the period-doubling bifurcation, as illustrated for the 2:1 horn by the open
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circles in the figure. The power at ωf grows linearly with A as it does outside the
horn, as illustrated by the filled circles.

We have analysed in detail the dynamics of the system around the 2:1-resonance
horn, finding a very good agreement with analogous periodically forced systems. This
shows that both the numerics and the experiments are reliable for this problem. For
a forcing amplitude above a critical value (which is small and typically A � 0.04), the
oscillatory vortex breakdown flow LCN can be driven to another oscillatory flow LCF

at a desired frequency ωf . This result is not particularly surprising; however what is
interesting is the spatial distribution of the oscillatory behaviour of LCF .

4.3. Harmonic forcing of LCN : spatial characteristics

In this section the Reynolds number is fixed at Re = 2800, and the spatial structure
of the oscillations in the flow is investigated as a function of the amplitude and
frequency of the forcing. Hot-film measurements are made in the boundary layer at
the fixed endwall, so they do not provide any spatial information of the flow. Likewise
amplitude equations, such as those used by Gambaudo (1985), Chiffaudel & Fauve
(1987) and Kuznetsov (2004), do not provide any spatial information either.

For small forcing frequency (ωf =0.1) figure 5 illustrates that the amplitude of
the oscillations near the axis (Wa) and near the wall (Ww) are of the same order of
magnitude for the unforced flow LCN (A= 0), and the forced flow LCF (at A= 0.03)
has similar behaviour. However, for large forcing frequency (ωf =0.5), the forced
limit cycle resulting from the collapse of the two-torus QP at the Neimark–Sacker
bifurcation has essentially no oscillations near the axis, as illustrated in the sequence
of computed phase portraits shown in figure 14. We now employ flow visualization
to explore this behaviour experimentally. Figure 15 shows snapshots in the axial
region over one forcing period of LCF at a low frequency ωf = 0.2 and amplitude
A= 0.04. Comparing with figure 3, which shows corresponding snapshots of LCN ,
they have qualitatively similar oscillations, as was observed in the computed phase
portraits at the lower frequency ωf =0.1 in figure 5. The limit cycle nature of the
flow visualization in figure 15 is confirmed by the hot-film data in figure 16 showing
the collapse from QP to LCF as A is increased at ωf = 0.2.

In contrast, for high forcing frequency ωf =0.5, the flow visualization of LCF

(figure 17) exhibits a quenching of the oscillations associated with the vortex
breakdown bubble. Movies of the LCF dye streak flow visualizations at ωf = 0.2
and 0.5 (movies 2 and 3 respectively) are available with the online version of the
paper. Even though the flow visualizations of LCF at ωf = 0.5 show a stationary
recirculation bubble, the hot-film data in figure 18 show that it is in fact a limit
cycle synchronous with the forcing. So where is it oscillating? The dye visualization is
inadequate to answer this question, because when the dye enters the boundary layer
on the rotating disk, it is quickly dispersed and only the flow structure near the axis
is clearly observed. To address this, we have also performed flow visualization using
fluorescent dye illuminated with a thin laser sheet through a meridional plane, which
does allow some visualization of the flow structure in the sidewall boundary layer.
Figure 19 shows snapshots of such flow visualizations (the images are cropped to
highlight the sidewall boundary layer on the left and the rotating bottom endwall
boundary layer, with the essentially steady recirculation zone on the axis providing
a reference frame). The snapshots indicate a certain degree of unsteadiness in the
bottom left corner region and the sidewall region, and this is more clearly evident in
movie 4 (available with the online version of the paper), from which these snapshot
were extracted. These flow visualizations provide some guidance as to where LCF at
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Figure 14. Phase portraits (with Wa and Ww as the horizontal and vertical axes) at Re = 2800,
H/R = 2.5, ωf = 0.5 (ωf /ω0 ≈ 2.88) and A as indicated. The dashed circle in the four panels is
LCN , included for reference.

t = 0 4.66 9.32 13.9 18.63 23.29 27.95 32.61

Figure 15. Dye flow visualization of the central core region of a forced state at H/R = 2.5,
Re = 2800, ωf = 0.2 and A = 0.04 at roughly equispaced times over one forcing period
Tf =2π/ωf =31.42 (the time for the first frame has been arbitrarily set to zero).
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Figure 16. Hot-film output time series and corresponding power spectral density for
H/R = 2.5, Re = 2800 with forcing frequency ωf = 0.2 and forcing amplitude A as indicated.

t = 0 4.71 9.41 14.12 18.82 23.53 28.23 32.94

Figure 17. Dye flow visualization of the central core region of a forced state at H/R = 2.5,
Re = 2800, ωf = 0.5 and A = 0.04 at various times; the forcing period Tf = 2π/ωf = 12.57 (the
time for the first frame has been arbitrarily set to zero).

the higher ωf is oscillating, but the numerical simulations are much better suited to
study the spatio-temporal structure of the flow.

Figures 20 and 21 show computed streamlines and contours of the azimuthal
vorticity, respectively, of LCF over one forcing period for ωf = 0.1, 0.2, 0.3, 0.4, 0.5, and
0.6; the ωf =0.2 and 0.5 cases correspond to the experimental flow visualizations in
figures 15 and 17. The relationship between the unsteady dye streaks in the experiment
and the unsteady computed streamlines is discussed in detail in Lopez & Perry (1992a)
for LCN , and the same is true for LCF in the present problem. For the ωf =0.5 case,
the dye streaks (figure 17) and the computed streamlines in the neighbourhood of
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Figure 18. Hot-film output time series and corresponding power spectral density for
H/R = 2.5, Re = 2800 with forcing frequency ωf =0.5 and forcing amplitude A as indicated.

t = 0 4.77 9.54 14.31 19.08 23.85

Figure 19. Fluorescent dye illuminated with a laser sheet through a meridional plane of
LCF at Re = 2800, H/R = 2.5, A = 0.04, and ωf = 0.5 at various times over about two forcing
periods.

the vortex breakdown bubble (figure 20e) coincide quite well, as they should for
steady axisymmetric flow. But of course this LCF is not steady. The corresponding
hot-film data (figure 18d) establish that this flow is a limit cycle synchronous with
the forcing frequency. Neither the streaklines nor the streamlines clearly show where
the oscillations are. By plotting contours of the azimuthal component of the vorticity
(figure 21e) we clearly see that the oscillations are restricted to the sidewall boundary
layer, as was suggested by the laser-sheet visualizations of figure 19 and movie 4.
Movies of the numerically computed streamlines and azimuthal vorticity contours of
LCF at ωf = 0.2 and 0.5 (movies 5 and 6 respectively) are available with the online
version of the paper, illustrating the spatial characteristics of the oscillations just
described.

Figures 20 and 21 show the changes in the vortex breakdown bubble and the
sidewall boundary layer when ωf increases from 0.1 to 0.6 in steps of 0.1. We can
clearly appreciate that the transition from an oscillating to a quiescent axial bubble
is gradual and continuous with variation in ωf , i.e. there is no bifurcation between
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Figure 20. Computed streamlines of LCF over one forcing period 2π/ωf (time increases
from left to right) at Re = 2800, H/R = 2.5, A = 0.04, for increasing values of ωf : (a)
ωf = 0.1 (ωf /ω0 ≈ 0.576), (b) ωf = 0.2 (ωf /ω0 ≈ 1.15), (c) ωf = 0.3 (ωf /ω0 ≈ 1.73), (d) ωf = 0.4
(ωf /ω0 ≈ 2.31), (e) ωf = 0.5 (ωf /ω0 ≈ 2.88), (f ) ωf = 0.6 (ωf /ω0 ≈ 3.46).

the oscillatory bubble and the quiescent bubble, all of these solutions are LCF states.
Figure 21 shows that while the vortex breakdown oscillations are quenched with
increasing ωf , the oscillations in the sidewall boundary layer increase in amplitude
and decrease in wavelength. Movie 6 with the online version of the paper shows that
these boundary layer oscillations propagate up the sidewall from the rotating disk
to the fixed lid (a close examination of the upper sidewall boundary layer region in
movie 4 shows similar upward propagating waves).
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Figure 21. Computed azimuthal vorticity contours of LCF over one forcing period 2π/ωf at
Re = 2800, H/R = 2.5, A =0.04, for increasing values of ωf : (a) ωf = 0.1 (ωf /ω0 ≈ 0.576), (b)
ωf = 0.2 (ωf /ω0 ≈ 1.15), (c) ωf = 0.3 (ωf /ω0 ≈ 1.73), (d) ωf = 0.4 (ωf /ω0 ≈ 2.31), (e) ωf = 0.5
(ωf /ω0 ≈ 2.88), (f ) ωf = 0.6 (ωf /ω0 ≈ 3.46).

5. Discussion and conclusions
We have conducted an experimental and numerical analysis of the harmonically

modulated unsteady vortex breakdown flow in a cylindrical container of aspect ratio
H/R = 2.5, in the region where the flow remains axisymmetric (from Re ≈ 2710 up to
Re ≈ 3000). We have explored a wide range of frequency forcing values, for moderate
forcing amplitudes; figure 7 shows the explored region and the bifurcations we have
observed. The quasi-periodic flow QP having both the natural frequency ωn of the
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Figure 22. Streamlines (right two panels) and contours of the azimuthal vorticity (left two
panels) for LCF at A = 0.04 and ωf = 0.5 (showing a snapshot in time) and for the (unstable)
basic state which was computed using arclength continuation and finite difference in Lopez
et al. (2001). (a) Re = 2800, (b) Re =3000, (c) Re = 4000.

unsteady vortex breakdown bubble and the forcing frequency ωf , exists between two
Neimark–Sacker bifurcations curves (the axis A= 0 and the solid line in figure 7); a
variety of resonance horns emerge from both curves, connecting them. As there are
no symmetries in this problem, except the rotational SO(2) symmetry which is not
broken for the parameter values studied, the dynamic behaviour is generic, and so
we have also found period-doubling regions. The dynamics observed are very rich,
and we have explored some of them in detail, in particular the 2:1 resonance, where
theoretical results covering the whole region between the two Neimark–Sacker curves
are available in the literature, and we have found a very good agreement with these.

What is particularly novel in the present study is the spatial characteristics of the
forced limit cycle LCF that exists for forcing amplitudes above the second Neimark–
Sacker curve. For forcing frequencies less than about twice the natural frequency,
the oscillations of the vortex breakdown bubble are enhanced, whereas for forcing
frequencies greater than about twice the natural frequency, the oscillations of the
breakdown bubble are completely quenched and all the oscillations in LCF are
restricted to the sidewall boundary layer region. Furthermore, the quenched LCF

structure is essentially the same as the structure of the steady axisymmetric base state
(except of course near the sidewall); see figure 22(a) which compares the snapshots of
LCF at Re =2800, A= 0.04 and ωf =0.5 with the (unstable) basic state at Re = 2800
which was computed using arclength continuation and finite difference in Lopez et al.
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(2001). Note that at Re =2800 the base state is only unstable to a single Hopf mode,
LCN . By Re = 3000, the basic state has undergone a second Hopf bifurcation to LCS .
Forcing the system in the axisymmetric subspace at Re = 3000, also with A= 0.04 and
ωf = 0.5, results in an LCF which, apart from the sidewall boundary layer region, also
coincides remarkably well with the unstable base state (see figure 22b). At Re = 4000
the base state has undergone a third Hopf bifurcation, and for the same forcing
amplitude and frequency (A= 0.04 and ωf = 0.5) all three Hopf modes are quenched
and the resulting LCF still coincides remarkably well with the unstable base state (see
figure 22c).

This open-loop control study has shown that the low-amplitude modulations can
either enhance the oscillations of the vortex breakdown bubble (for low frequencies)
or quench them (for high frequencies). Enhancing the oscillations can be beneficial in
some applications where mixing is desired, such as swirl combustion chambers. The
results indicate that high-frequency modulations of unsteady vortex breakdown drive
the system to the unstable basic state in the vortex core region. This suggests that
the basic state, which exists for all Reynolds numbers, can be used as a goal in a
closed-loop control strategy. This would be interesting to explore in other applications
where unsteady vortex breakdown is prevalent, such as the tail buffeting problem.
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